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EXTENSIONS OF CHEVALLEY GROUPS 

BY 

STEPHEN BERMAN AND ROBERT V. MOODY 

ABSTRACT 

Let Go be a split simple Chevalley group of any type over the field K and G its 
universal group; and let (~o be the group of automorphisms of the correspond- 
ing Chevalley algebra, LK, generated by Go and all the diagonal automorph- 
isms. A group t~ (and appropriate homorphisms) is constructed which 
generalizes the group GL. (K) when Go is specialized to type A._~, 

I n t r o d u c t i o n  

If  K is any  field, K *  its non-ze ro  e lements ,  and if n is any  posi t ive integer 

then the fo l lowing c o m m u t a t i v e  diagram,  in which  all rows  and co lumns  are 

exact ,  is well k n o w n  when  G = S L . ( K ) ,  G o =  PSL.(K) ,  (~ = G L . ( K ) ,  t~o= 

PGL. (K) ,  Z is the center  of  SL. (K) ,  and the h o m o m o r p h i s m s  are the obv ious  

ones :  

1 ~ Z 

(1)  1 �9 G 

1 > Go 

1 

1 1 

p (.)n 

' >  K *  > K*"  > I 

i det 

�9 t~ �9 K *  ~1 

d 

�9 Go �9 K*/K*"  �9 1 

1 1 

Here ,  as in the rest  of  the paper ,  we use the nota t ion  of  Dieudonn6  [3] fo r  the 

classical  groups.  If  the three g roups  S L . ( K ) ,  PSL.(K) ,  and PGL.(K)  are 
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viewed as Chevalley groups of type An-, over K, then it is reasonable to view 

this diagram in the wider context of all Chevalley groups. Thus, SLn(K) and 

PSL,(K) are special cases of the universal and adjoint Chevailey groups, G 

and Go; while PGLn(K) is the group t~o, which is generated by Go and all 

diagonal automorphisms of the underlying Chevalley algebra, LK, over K. (Go 

is the group t~ defined by Carter in [2, p. !18], and the group G defined by 

Seligman in [4, p. 51].) We then wish to construct a group t~, and appropriate 

mappings, so that we have the commutative diagram (1) with exact rows and 

columns. Here n will be the order of the quotient of the weight lattice by the 

root lattice. 

Our construction is in fact a two step affair in which, beginning with a root 

system A of rank l. we first construct a torus /:/ of rank l + 1 for which a 

corresponding diagram [see diagram (2)] holds with G, Go, and t~0 replaced by 

suitable maximal split torii within them. The group t~ then appears as a 

quotient of a semi-direct product of G and /~/. 

As long as A is not of type Dt with l even, the quotient of the weight lattice 

Lt by the root lattice L0 is ciclic. Our construction requires the choice of an 

element of L, which generates L,/Lo. In the case of Dr, l even, L,/Lo is the 

direct product of two cyclic groups of order two, and the construction is 

modified accordingly with two generators being chosen. We are able to show 

that the outcome of the construction is essentially independent of the choice of 

generator except possibly in the case when A is of type AI. Of particular interest 

in the construction is the precise description of det: t ~  K*, which when 

viewed abstractly, is nothing more than a certain evaluation map. 

Realizations of the universal and adjoint groups G and Go are well known, 

see [5]; while the groups t~o are identified in [4]. The question of identification 

of the groups (~ is rather interesting, but not as yet totally settled. When A is of 

type A~ and we choose the highest weight of the standard representation as the 

generator of L,/Lo then t~ is, as expected, GL~.,(K) and det is the usual 

determinant mapping. For ,x of type BI, t~ is the group of invertible elements in 

the even Clifford algebra, C ' (V) ,  of an orthogonal geometry V with maximal 

Witt index, which normalize V; and det is the inverse of the norm map of 

C~(V) restricted to t~. When A is of type C, t~ is the group of similitudes of a 

symplectic geometry and det is the multiplier map. When A is of type Dt the 

identification of t~ is not clear to us, but we note that for I odd, the realization 

of t~ and det will involve groups related to orthogonal geometries, being tied up 

with fourth powers in K*, and hence seems rather unusual. 

Our main theorem is the following: 
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THEOREM. Let K be a field and A a root system of rank I. Let L~ and Lo be 

the weight and root lattices of  A and let n = IL~/Lol. Let LK be the Chevalley 

algebra of A over K and let G and Go be the corresponding universal and adjoint 

Chevalley groups. Let Go be the group in Aut(LK) generated by Go and the 

diagonal automorphisms. 

(1) l f  L ~/ Lo is cyclic, then for each choice of a A E L ~ which generates L ~/ Lo 

there is a group G and mappings p, & i, det, res, for which the commutative 

diagram (l) holds with exact rows and columns. 

(2) If L ~/Lo is the Klein four-group then for each pair A ", A of elements of L~ 

generating L J Lo there is a group G and mappings p, & i det, res, for which the 

commutative diagram (1') holds with exact rows and columns. 

(3) When A is not of type A~ the group G is, up to isomorphism compatible 

with the diagram, independent of the choice of generators. 

Notation is introduced in Section 1. In Section 2 we construct  the toroidal 

diagram (2) when L, /Lo is cyclic, and in Section 3 we complete this to the full 

diagram (1). The case of non-cyclic LdLo is dealt with in Section 4. In Section 5 

we discuss the uniqueness of t~. 

It is perhaps worthwhile to remark that the existence of our diagrams, and 

some usual properties of Chevalley groups, easily imply that any subgroup of t~ 

which is normalized by elements from G, either contains G or lies in the center  

of t~. 

1. Notation and conventions 

Let A be finite indecomposable root system determined by a Cartan matrix 

(A~j). Let a~,. �9 �9 a~ be a fundamental system of roots of A, so A is a subset of 

the root lattice L o = Z a , @ " ' O Z a ~ .  Let  A = Z h ~ O . . . O Z h ~  be a free 

abelian group on l generators h , . . . , h r .  Each fl = E,z,a, E Lo determines a 

homomorphism of A into Z by [3 (hs) = E,z,A,j. Put L, = H o m ( A , Z ) ,  the lattice 

of weights. The above mapping of Lo to L~ is an injectiv-, homomorphism by 

which we consider Lo as a subgroup of L,. The quotient group L,/Lo is finite 

and is given by Table I (see [5]). 

Table I 

Type of A A, B~ C~ D~., Dz= E, E, E,. F,, G2 

L,/Lo _Z/(I+I)Z Z/2Z Z/2Z Z/4Z Z/2ZxZ/2Z Z/3Z Z/2Z {l} 
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For/3 ~ L,, h E A, we will usually write (/3, h) for/3(h).  

Let K be a field and K* its non-zero elements. For each subgroup L lying 

between Lo and L, there is a Chevalley group Gt. over K. We use the notation 

of [5] for the various objects associated with this group. Thus, G,. has an 

abelian subgroup Ill. isomorphic to the direct product of ! copies of K*, and a 

set of one-parameter groups Xo, a E A, each of which is normalized by H~. 

More precisely each h E Hr. can be written in the form h,(t ,) . . ,  h,(t~) where 

each t, E K* and the h, satisfy h~(t)h,(t')= h,(tt'). Then, for xo(s)~ X~ we 
have 

) ~__h(t) ( ~'"'> i i X a  S i i ~ - X a  S i �9 
.= .= 

Moreover, Ill=, h, (t,) = i if and only if l-l~i=~tl ~''h'>= 1 for all # ~ L. Each 

h = Ill~,h,(t,) E HL determines an element of Hom(L, K*) by/.t ~ II~,tl ''",>, for 

all tz EL .  The resulting mapping of HL to Hom(L,K*)  is an injective 

homomorphism via which we identify HL with a subgroup of Hom(L,K*).  

In the sequel we will be interested in only the two extreme cases of L, that is 

Lo and L ~. We will denote G~.~ and H~ by Go and Ho respectively, and G~_, and 

H,, by G and H respectively. We note that H = Hom(L~,K*). 

The center Z of G lies in H and consists of elements lll~,h,(t,) for which 

[ll_,tl ~''h,~ = 1 for all ~z ~ Lo. Z can be identified with Hom(L~/Lo, K*), and we 

will make this identification. The group Go is a natural homomorphic image of 

G by a homomorphism ~- with kernel Z. We also note that Ho is the subgroup 

of elements of Hom(L,,,K*) which can be extended to elements of H =  
Hom(L ,, K*). 

Let/-7/0 = Hom(Lo, K*). Then if LK denotes the Chevalley algebra associated 

to K and A, we have that both /-it0 and Go are subgroups of Aut(LK). t~o is 

defined to be the subgroup of Aut(L~) generated by Go and/-fro. Each h E/~o 

determines the automorphism of LK whose effect on the root space Lo, a ~ A, 

is multiplication by the scalar h (a). Go is normalized by/g/o,/iro r)  Go = Ho, and 

for a EA, h ~Ho, t E K * ,  we have hxo(t)h-' =x~(h(a)t). 

2. Construction of /~ when L,/Lo is cyclic 

Thoughout this section and the next we assume that L,/Lo is cyclic of order 

n. We are going to construct a group f / a n d  mappings i, p, det, 8, d, and res, so 

that the following diagram is commutative and has exact rows and columns. 

Here all unmarked non-trivial mappings are identity mappings, nat: K*--> 

K*/K*" is the natural homomorphism and (;)" : K * ~ K * "  is the nth power 

homomorphism. 



46 s. BERMAN AND R. V. MOODY lsrael J. Math., 

I I 1 

p ( - )"  

I > Z ~ K *  ~ K * "  ~ 1 

i d e t  

(2)  1 ~ H �9 /g/ ~ K *  , I  

d 

I ~ Ho  , Is ~ K * / K * "  , I  

i I 1 

Since L , / L o  is cyclic we can choose a weight A in L, such that A + L o  

generates L~/Lo.  Then L~ = Z A + Z a ,  + . . .  +Za~. Embed L0 in a free group 

I~ = Z a o @ . . .  O Z a ,  of rank ! + 1. The group 1.7i is defined to be Hom(/~, K*). 

(a) Definition of p. Let [ E Z = H o m ( L , / L o ,  K*) .  We then set p ( f ) =  

f ( A +  Lo). Clearly pot) is an n th  root of I in K* and p is a group homomor- 

phism making the top row of the diagram exact. 

(b) Definition of res and 8. The map res: H ~ H o  just sends the 

function f E i2i to its restriction to Lo. Thus, res is surjective and its kernel the 

group of f E f / f o r  which / (a ,  ) = I, 1 ~ i <- 1. For each c E K * define fc E/-7/by 

fc (ao) = c -~, fc(a , )  = 1, 1 <- i <- l. The map 8 is given by 8(c) = f ,  for all c E K*,  
and it is immediate that the center column is exact. 

(c) Definition of i and det. The homomorphism i is defined as follows: 

i(f)(ao) = f(A)-' ,  i(.f)(aj) = f(otj), 1 <- j <- l. 

We know that n A ~ L o ,  thus, n A = z , a ~ + . . . + z t a t  for some z, E Z ,  and 

g.c.d. (n, z , . . . ,  zt) = l. Let  zo = n. We then define the homomorphism det : ~ -o 

K* by det(f)  = f ( w )  for all f E H, where w = - ( Z o a o +  . . .  + zta,). With these 
definitions the center row is exact. 

The commutativity of each of the squares other than the lower right one is 

easy to check. The definition of d:/210 ~ K * / K * "  is forced by the rest of the 

diagram; namely for f ~ Iglo and f any preimage of .f in/~, d ( f )  = nat(detff)). 

3. C o n s t r u c t i o n  of (~ w h e n  L~/Lo  is c y c l i c  

Since Go is normalized by /-7/o, there is a homomorphism ~o: ff/o-~Aut(Go) 

given by h E I~loF-~(gF-~hgh -') for all g E Go. As noted in Section I we have 

that ~ o ( h ) x ~ ( t ) =  x o ( h ( a ) t )  for all a EA,  t E K. 
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We can define a similar homomorphism ~b : / - ) ~  Aut(G) with the property 

that ~b(h)x~(t) = x~(h(a)t) for all h E H, a E A, and t ~ K. Indeed, G is known 

to be defined by the generators x~(t), a E A, t E K, and the relations given in 

[5, sec. 6]. For each h E/g/, the mapping ~b(h) taking x~(t) into x~(h(a)t) 
preserves these relations and hence determines an automorphism of G. 

Let ~- : Aut(G) ~ Aut(G0) be defined as follows: ~'0t)Tr(g) = ~r(h.(g)), for all 

)t ~ Aut(G),  g E G. We then have the following commutat ive diagram: 

(3) 

/7/ , Aut(G) 

,o,,L $.  

/7/0 -, Aut(Go) 
~o 

Let /z =i ' : i ( H ) ~ H .  If h E H ,  then for x , ( t ) E G  we have hx~(t)h-'= 
x~(h(a)t)= q~(i(h ))xo(t). Thus, for all /~ E i(H) and for all g E G, ~(ft)g = 

t~ (fi)gt~ (fi)-'. 
Let G x~/q  be the semi-direct product of G and /q relative to qJ. Thus 

Gx,ISI ={(g,h)lg EG, h Eft/} with multiplication (g,,h,)(g2, h2)= 
(g~ J/(h,)g2, h,h2). Our group t~ is (Gx,Igl)/M, where M = 

{(g, h) E G x , / ~  I det(h ) = 1 and # (h) = g -~}. Some simple computat ions show 

that M is a normal central subgroup of Gx, f f / .  

For notation we denote the image of the element (g, h) E Gx,I?t in G, under 

the natural homomorphism, by [g, h ]. 

Now we will define mappings det, i, res, d, 6 which make diagram (1) 

commutat ive with exact rows and columns. Each of these mappings will extend 

the corresponding ones of diagram (2). 

(a) Definition of i and det. The mapping i is the composite  g ~  (g, I)F-~ [g, 1] 

and is injective. The map det:  t~ ~ K *  is defined by det[g,h]  = det(h). This 
makes the center row exact. 

(b) Definition of res and 6. Define R: G x , H  ~ Go by R(g, h) = ~r(g) res(h). 

Since ~r and res are surjective and t~o= Go/-)o, R is a surjective homo- 
morphism. 

If (g,h) E M, then det(h) = I and /z(h) = g- ' .  Thus, zr(/z(h)) = 7r(g)-'. But 

from (2), 7r(tt ( h ) )=  res(h), and hence R(g,h)= 1r (g ) res (h )=  1. Thus, R can 

be factored through M, to obtain our map res:  t~ ~ t~o, which is surjective. 

Define 8 : K * ~  t~ by 8(c)  = [1,8(c)].  8 is injective and 8(K*)  is contained 

in the kernel of res: t~ ~ t~o. Conversely,  suppose that res[g,h]  = 1. From 
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rr(g) res(h) = 1, we obtain res(h) = ~-(g-') E ~r(G) = Go, and so 

res(h ) ~ f/o ( ]  Go = H0. It follows that there is an h, ~ / : /  such that 1fix (h ,) = 

res(h) .  Then r e s ( h , ) = r e s ( h ) ,  so h , ' h  = 8 ( k )  for some k E K*. Once we 

prove that [g, h,] ~ 8(K*) ,  then we will have [g, h,] [1, ~(k)] = [g, h, ~(k)] = 

[ g , h ] E ~ ( K * ) ,  and we are done. 

Consider [g,h,]. We have res[g, hd=Tr(g)res (h , )=~r(g)res (h )= 1. Now 

res (hJ  = ~rix(h,), so rr(gix(h,)) = 1, whence gix(h,) = z E Z. We will show that 

[ l ,~p(z)]  = [g, h,], and so [g,h,] = ($([1,p(z)])E (5(K*). Now [1,(Sp(z)] = [g, h,] 

if and only if ( g , ~ ( p ( z ) ) - ' h , ) ~ M ,  which in turn is true if and only if 

det (8(p(z) ) - 'hJ  = 1 and g - ' =  Ix(~(p(z))- 'h,).  Since ~(p(z ) )= i(z),  we have 

de t (~ (p (z ) ) - '=  1, and since h , E i ( H ) ,  de t (~ (p (z ) ) - ' h , )=  1. Finally, 

Ix(8(p(z))- 'h,)  = Iz(i(z)- ')tz(h,) = z- ' ix(h,)  = g- ' .  This completes the proof  of 

the exactness  of the center  column. 

The commutativi ty of all squares of (1), other than the lower right hand one, 

is an easy matter to verify. Once again the definition of d is forced in order  to 

make the lower right hand square commute.  

4. C o n s t r u c t i o n  of /~ and  (~ w h e n  L j / L o  = Z / 2 Z  x Z / 2 Z  

The situation L , /Lo  ~ Z / 2 Z  • Z / 2 Z  occurs if and only if A is of type D~, with 

I even. In this case every occurrence of K*  in diagram (3) is replaced by 

K*  • K*.  Thus, we will construct  t~ and appropriate mappings so that we have 

the following commutat ive diagram with exact rows and columns. 

1 1 1 

$ $ $ 

) Z ) K * •  •  .2 

i d�9 

(1') 1 ) G -" (~ ) K *  • K *  ) I 

) Go ~- do • K * / K  .2 

I I I 

p ( - )2x( - )2  

1 K *  * K .2 ) 1 

d 

t " K * / K  .2 ) 1 

As before,  we begin with the construction of a group i f / fo r  which (1') holds 

when every occurrence of " G "  is replaced by the corresponding " H "  group. 
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We will assume that the fundamental 

compatibly with the Dynkin diagram 

1 2 I - 2  

roots a ~ , . . . , a t  of A 

I - 1  

l 

49 

are labelled 

Then the weights 

A * = ~  a , + 2 a 2 + . . . + ( l - 2 ) a , . 2 +  -~ a,_,+ a, 

and 

A - = ~  a , + 2 a 2 + . . . + ( I - 2 ) a l  2+ a, ,+ at 

determine a pair of generators for L1/Lo, see [1]. We let /~=  

Za"  @ Z a  - @ Za~ @.  �9 �9 @ Za ,  be a free abelian group on l + 2 gerterators, and 

put I2i = Hom(/_[, K*). Let 

= -(2o +o + +,, 

and 

w - = - ( 2 a  + a , + 2 a 2 + - - - + ( l - 2 ) a t  2+(~-~--~)ott , + ( / ) a l ) .  

The map i :  H---*fl is defined as follows: if f E H, we let i(f)(a~)=[(a~) for 

l -<j -<l, while i ( f ) ( a ' )  =f(A~) -' and i ( f ) (a - )  = f (A- ) - ' .  The map 

det:/2/---*K* x K*  is defined by det(f) = ( f (w*) ,[ (w-)) ,  for all [ E if/. The 

exactness of 1-*H--->t~I---*K*• follows from the fact that the 

homomorphism d~ :/[--~L defined by a~--~ at, 1 ~ j  =1, a + ~---~- h *, a - ~ - * -  h- ,  

has kernel Zw" + Zw- .  

The mapping 8 : K *  • K* ~ / 2 / i s  defined by (c ' ,c-)~-~f ,  where f (ai)  = 1 for 

I <-_j <= l , [ ( a ' )  = (c§ -'. [ (a- )  = (c-)  -~, for all (c~,c -) E K* x K*.  p : z - - , K *  x 

K * is f ~ (f(A '), f(A -)), for all f ~ Z = Hom(L, /Lo ,  K*). Finally, res : /2 /~ /~o  

is simply restriction of the functions in /2/ to the domain Lo. 

(~ is now easily constructed in precisely the same manner as given in Section 

3. 
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5. Uniqueness questions 

The construction of (~ discussed in Sections 2 and 3 depends on the choice of 

a A E L, which generates the cyclic group L , / L o .  Here we show that if we 

replace A by A', where A' + Lo = ( +- A) + Lo, then the corresponding group (~' 

is isomorphic to (~ in a way which is "compatible" with the diagrams (1) in 

which they lie. 

First, suppose that A' = - A. For each mapping involved in the construction 

of t~, the corresponding mappings for (~' will carry the same name with the 

addition of a prime; for example d,', det', etc. Define 4> :/2/__~fi by ch([)(a~) = 

[ ( a j ) ,  ! _< ./-< I, and qb ([)(ao)  =/ (ao)  -~, for all .f E H. Then d~ is an automorphism 

of /-t and or' G x ~/2/--~ G • defined by (g, /l ) h---~ (g, ~b(/~)) is an isomorph- 

ism. We have i' = hi and det(/1) =/1 (w) for all/~ E/-2/, see Section 2. Similarly, 

we have w ' = - ( Z o a o - ( z , a ~ + . . . + z ~ a l ) ) ,  from which it follows that 

det'(d~ (/~)) = d~ (h)(w')  = det (/~)-'. We obtain from this that ,~ (M) = M',  and or 

induces an isomorphism dr: t~ ---, (~'. It is easy to see that if the diagrams (I) for 

t~ and G'  are joined by means of the mapping dr. the maps x ---, x - '  on all groups 

involving K*, and identity maps everywhere else, the resulting diagram is 
commutative. 

Now suppose A'=-A(mod Lo). We use the above conventions on notation. 

Note that for n A = z ~ a ~ + . . . + z t a t  and n A ' = z ' , a , + . . . + z ' t e e , ,  we have 

w = - ( Z o a o + ' . "  + z~at) and w' = - (Zoao+ z '~a ,  + . . .  + z ' t a t ) ,  with z0 = n and 
w - w '  = - n ( A -  A') .  

Define ~b :/4---~H by ch( f ) (a i )  = f(aj) ,  I <- j <- I, and d~(.f)(ao) = f(A - A').f(ao). 

Then ,~, is an automorphism of /-?/ and 6: Gx, /2 /  ---,G x~,,/g/ defined by 

(g, /~)  ~ (g, ~b(/~)) is an isomorphism. One checks that i ' =  cbi and det'~b = det. 

Then 6(M) = M'  and 6 induces an isomorphism 8 : t ~ t ~ ' .  This time the two 

corresponding diagrams (I) join together by 8 and identity maps everywhere 

else to give a commutative diagram. 

It follows from these remarks that the construction of t~ is essentially unique 

in all cases except possibly A,  and Dt when ! is even. In fact, the reader may 

quite easily show that the arguments above can be extended to the case of Dr, I 

even. so that the construction is unique in this case too. The situation for type 

At is unknown. 
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